988 resultados para PORPHYROMONAS-GINGIVALIS INFECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral Diseases (2012) 18, 648654 Aim: Infective agents may affect pregnancy outcomes by deregulating homeostasis. Objectives: The effects of Porphyromonas gingivalis infection before and at different gestation periods were evaluated. Materials and Methods: Wistar rats infected via subcutaneous with P. gingivalis W83, one week before mating (BM), days 1 (PR1) and 11 of gestation (PR11), and controls were evaluated, and samples were obtained at the end of gestation. P. gingivalis was detected by PCR. Cytokine was determined by ELISA. Results: Infected rats had lower maternal gain of weight. Implantation was not observed in 2/12 BM rats. PR11 presented more fetal-placental resorptions and lower placenta/fetus weight than controls. P. gingivalis was detected in placenta and fetus. IL-6 and TNF-a levels were higher in placenta and serum of infected groups, except for TNF-a in placenta of PR1. IL-1 beta levels were higher in placenta of PR11, but lower in serum and placenta of PR1. There were no differences in IL-10 and PGE2 concentrations among the groups (P < 0.05). Conclusions: The experimental infection by P. gingivalis resulted in alterations in the gestational pattern and in fetal development. The consequences of infection at mid-gestation were more severe than at the beginning, possibly due to the induction of pro-inflammatory cytokines in the fetal compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finely-tuned innate immune response plays a pivotal role in protecting host against bacterial invasion during periodontal disease progression. Hyperlipidemia has been suggested to exacerbate periodontal health condition. However, the underlying mechanism has not been addressed. In the present study, we investigated the effect of hyperlipidemia on innate immune responses to periodontal pathogen Porphyromonas gingivalis infection. Apolipoprotein E-deficient and wild-type mice at the age of 20 weeks were used for the study. Peritoneal macrophages were isolated and subsequently used for the study of viable P. gingivalis infection. ApoE−/− mice demonstrated inhibited iNOS production and impaired clearance of P. gingivalis in vitro and in vivo; furthermore, ApoE−/− mice displayed disrupted cytokine production pattern in response to P. gingivalis, with a decreased production of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1. Microarray data demonstrated that Toll-like receptor (TLR) and NOD-like receptor (NLR) pathway were altered in ApoE−/− mice macrophages; further analysis of pattern recognition receptors (PRRs) demonstrated that expression of triggering receptors on myeloid cells-1 (TREM-1), an amplifier of the TLR and NLR pathway, was decreased in ApoE−/− mice macrophages, leading to decreased recruitment of NF-κB onto the promoters of the TNF-α and IL-6. Our data suggest that in ApoE−/− mice hyperlipidemia disrupts the expression of PRRs, and cripples the host’s capability to generate sufficient innate immune response to P. gingivalis, which may facilitate immune evasion, subgingival colonization and establishment of P. gingivalis in the periodontal niche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF- production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD 147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cogo K, de Andrade A, Labate CA, Bergamaschi CC, Berto LA, Franco GCN, Goncalves RB, Groppo FC. Proteomic analysis of Porphyromonas gingivalis exposed to nicotine and cotinine. J Periodont Res 2012; 47: 766775. (c) 2012 John Wiley & Sons A/S Background and Objective: Smokers are more predisposed than nonsmokers to infection with Porphyromonas gingivalis, one of the most important pathogens involved in the onset and development of periodontitis. It has also been observed that tobacco, and tobacco derivatives such as nicotine and cotinine, can induce modifications to P. gingivalis virulence. However, the effect of the major compounds derived from cigarettes on expression of protein by P.gingivalis is poorly understood. Therefore, this study aimed to evaluate and compare the effects of nicotine and cotinine on the P.gingivalis proteomic profile. Material and Methods: Total proteins of P gingivalis exposed to nicotine and cotinine were extracted and separated by two-dimensional electrophoresis. Proteins differentially expressed were successfully identified through liquid chromatography-mass spectrometry and primary sequence databases using MASCOT search engine, and gene ontology was carried out using DAVID tools. Results: Of the approximately 410 protein spots that were reproducibly detected on each gel, 23 were differentially expressed in at least one of the treatments. A particular increase was seen in proteins involved in metabolism, virulence and acquisition of peptides, protein synthesis and folding, transcription and oxidative stress. Few proteins showed significant decreases in expression; those that did are involved in cell envelope biosynthesis and proteolysis and also in metabolism. Conclusion: Our results characterized the changes in the proteome of P.gingivalis following exposure to nicotine and cotinine, suggesting that these substances may modulate, with minor changes, protein expression. The present study is, in part, a step toward understanding the potential smokepathogen interaction that may occur in smokers with periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study investigated the role of periodontal disease in the development of stroke or cerebral infarction in patients by evaluating the clinical periodontal conditions and the subgingival levels of periodontopathogens. Material and Methods: Twenty patients with ischemic (I-CVA) or hemorrhagic (H-CVA) cerebrovascular episodes (test group) and 60 systemically healthy patients (control group) were evaluated for: probing depth, clinical attachment level, bleeding on probing and plaque index. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were both identified and quantified in subgingival plaque samples by conventional and real-time PCR, respectively. Results: The test group showed a significant increase in each of the following parameters: pocket depth, clinical attachment loss, bleeding on probing, plaque index and number of missing teeth when compared to control values (p<0.05, unpaired t-test). Likewise, the test group had increased numbers of sites that were contaminated with P. gingivalis (60%x10%; p<0.001; chi-squared test) and displayed greater prevalence of periodontal disease, with an odds ratio of 48.06 (95% CI: 5.96-387.72; p<0.001). Notably, a positive correlation between probing depth and the levels of P. gingivalis in ischemic stroke was found (r=0.60; p=0.03; Spearman's rank correlation coefficient test). A. actinomycetemcomitans DNA was not detected in any of the groups by conventional or real-time PCR. Conclusions: Stroke patients had deeper pockets, more severe attachment loss, increased bleeding on probing, increased plaque indexes, and in their pockets harbored increased levels of P. gingivalis. These findings suggest that periodontal disease is a risk factor for the development of cerebral hemorrhage or infarction. Early treatment of periodontitis may counteract the development of cerebrovascular episodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that benzamidine-type compounds can inhibit the activity of arginine-specific cysteine proteinases (gingipains HRgpA and RgpB); well-known virulence factors of Porphyromonas gingivalis. They also hinder in vitro growth of this important periodontopathogenic bacterium. Apparently growth arrest is not associated with their ability to inhibit these proteases, because pentamidine, which is a 20-fold less efficient inhibitor of gingipain than 2,6-bis-(4-amidinobenzyl)-cyclohexanone (ACH), blocked P. gingivalis growth far more effectively. To identify targets for benzamidine-derived compounds other than Arg-gingipains, and to explain their bacteriostatic effects, P. gingivalis ATCC 33277 and P. gingivalis M5-1-2 (clinical isolate) cell extracts were subjected to affinity chromatography using a benzamidine-Sepharose column to identify proteins interacting with benzamidine. In addition to HRgpA and RgpB the analysis revealed heat-shock protein GroEL as another ligand for benzamidine. To better understand the effect of benzamidine-derived compounds on P. gingivalis, bacteria were exposed to benzamidine, pentamidine, ACH and heat, and the expression of gingipains and GroEL was determined. Exposure to heat and benzamidine-derived compounds caused significant increases in GroEL, at both the mRNA and protein levels. Interestingly, despite the fact that gingipains were shown to be the main virulence factors in a fertilized egg model of infection, mortality rates were strongly reduced, not only by ACH, but also by pentamidine, a relatively weak gingipain inhibitor. This effect may depend not only on gingipain inhibition but also on interaction of benzamidine derivatives with GroEL. Therefore these compounds may find use in supportive periodontitis treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successive immunization of mice with Fusobacterium nucleatum and Porphyromonas gingivalis has been shown to modulate the specific serum IgG responses to these organisms. The aim of this study was to investigate these antibody responses further by examining the IgG subclasses induced as well as the opsonizing properties of the specific antibodies. Serum samples from BALB/c mice immunized with F. nucleatum (gp1-F), P. gingivalis (gp2-P), P. gingivalis followed by F. nucleatum (gp3-PF) F. nucleatum followed by P. gingivalis (gp4-FP) or saline alone (gp5-S) were examined for specific IgG1 (Th2) and IgG2a (Th1) antibody levels using an ELISA and the opsonizing properties measured using a neutrophil chemiluminescence assay. While IgG1 and IgG2a subclasses were induced in all immunized groups, there was a tendency towards an IgG1 response in mice immunized with P. gingivalis alone, while immunization with F. nucleatum followed by P. gingivalis induced significantly higher anti-P. gingivalis IgG2a levels than IgG1. The maximum light output due to neutrophil phagocytosis of P. gingivalis occurred at 10 min using nonopsonized bacteria. Chemiluminescence was reduced using serum-opsonized P. gingivalis and, in particular, sera from P. gingivalis-immunized mice (gp2-P), with maximum responses occurring at 40 min. In contrast, phagocytosis of immune serum-opsonized F. nucleatum demonstrated peak light output at 10 min, while that of F. nucleatum opsonized with sera from saline injected mice (gp5-S) and control nonopsonized bacteria showed peak responses at 40 min. The lowest phagocytic response occurred using gp4-FP serum-opsonized F. nucleatum. In conclusion, the results of the present study have demonstrated a systemic Th1/Th2 response in mice immunized with P. gingivalis and/or F. nucleatum with a trend towards a Th2 response in P. gingivalis-immunized mice and a significantly increased anti-P. gingivalis IgG2a (Th1) response in mice immunized with F. nucleatum prior to P. gingivalis. Further, the inhibition of neutrophil phagocytosis of immune serum-opsonized P. gingivalis was modulated by the presence of anti-F. nucleatum antibodies, while anti-P. gingivalis antibodies induced an inhibitory effect on the phagocytic response to F. nucleatum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis is a chronic inflammatory disease that results in extensive soft and hard tissue destruction of the periodontium. Porphyromonas gingivalis possesses an array of virulence factors and has been shown to induce expression of inducible nitric oxide synthase (iNOS) in inflammatory cells. The aim of this study was to investigate the effect of eliminating iNOS in a murine model of P. gingivalis infection. This was achieved by utilizing a P. gingivalis-induced skin abscess model, and an alveolar bone loss model employing an oral infection of P. gingivalis in iNOS knockout mice. The results indicated that iNOS knockout mice exhibit more extensive soft tissue damage and alveolar bone loss in response to P. gingivalis infection compared to wild-type mice. The local immune response to P. gingivalis in iNOS knockout mice was characterized by increased numbers of polymorphonuclear monocytes, while the systemic immune response was characterized by high levels of interleukin-12. The iNOS is required for an appropriate response to P. gingivalis infection.